
Universal Systems
Language: Lessons
Learned from Apollo

A
n inordinate amount of money is spent in
projects where system design and software
development play a key role, huge portions
of it wasted, and critical systems run the
risk of failure, sometimes leading to a major

catastrophe. This occurs in large part because of the
“after the fact” paradigm on which the languages used
to define systems are based.

The assumption made here is that system engineers
and software developers can significantly reduce the
well-known problems associated with doing busi-
ness as usual by using a language based on a radi-
cally different approach, one that is preventive instead
of curative. The Universal Systems Language is such
a language.1,2 Based on systems theory—to a great
extent derived from lessons learned from the Apollo
onboard flight software effort—USL has evolved over
several decades and taken on multiple dimensions. Its
purpose has been to solve problems considered next
to impossible to solve with traditional approaches, at
least in the foreseeable future.

According to users, USL eliminates any preconceived
notions because it is a world unto itself—a completely
new way to think about systems. Instead of object-
oriented and model-driven systems, the designer
thinks in terms of system-oriented objects (SOOs) and
system-driven models. Much of what seems counter-
intuitive with traditional approaches, which tend to be
software centric, becomes intuitive with this systems-
centric approach.

USL was created for designing systems with signifi-
cantly increased reliability, higher productivity, and
lower risk. We designed it with the following objec-
tives in mind:

reduce complexity and bring clarity into the think-
ing process;
ensure correctness by inherent, universal, built-in
language properties;
ensure seamless integration from systems to soft-
ware;
develop unambiguous requirements, specifications,
and design;
ensure that there are no interface errors in a system
design and its derivatives;
maximize inherent reuse;
ensure that every model captures real-time execu-
tion semantics (for example, asynchronous and dis-
tributed);
establish automatic generation of much of design,
reducing the need for designers’ involvement in
implementation details;
establish automatic generation of 100 percent, fully
production-ready code from system specifications
for any kind or size of software application; and
eliminate the need for a high percentage of testing
without compromising reliability.

USL can address these objectives because of the uni-
versal systems theory that forms its foundations. The

•

•

•

•

•

•
•

•

•

•

Based on a preventive, development-before-the-fact philosophy that does not allow errors

in the first place, the Universal Systems Language has evolved over several decades, offering

system engineers and software developers a language they can use to solve problems previously

considered next to impossible to solve with traditional approaches.

Margaret H. Hamilton and William R. Hackler
Hamilton Technologies, Inc.

C o v e r f e a t u r e

	 34	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

	 December 2008	 35

technology also takes roots from other sources—other
real-world systems and formal linguistics, methods, and
object technologies.

ApoLLo BeginningS
USL had as its origin our study of Apollo flight

software development. Our primary questions were,
“What could we do better for future systems?” and
“What should we keep doing because we are doing it
right?”3-6 We analyzed almost every aspect of the flight
software. Naturally, this study reaffirmed some earlier
assumptions about systems and software, called into
question others, and added new ones. Some of what
was learned might seem obvious in today’s world, but
what might not be so obvious is what could be derived
from these assumptions and later become part of USL’s
requirements.

Apollo was the ideal environ-
ment for jump-starting a “never-
in-the-box” technology. There was
no school to attend or field to learn
what today is known as “software
engineering” or “systems engineer-
ing.” When there were no answers
to be found, at times we just had to make it up, and we
had to design things to work the first time. Many on
the team were fearless 20-something-year-olds, and
dedication and commitment were a given, but there
was no time to be a beginner. Learning was by doing,
and a dramatic event would often dictate change.
Because software was a mystery, a black box, upper
management gave us total freedom and trust. Mutual
respect was across the board. We were the luckiest
people in the world. There was no choice but to be
pioneers. What would later become foundations for
USL enabled the Apollo team to create the software
for the trip to the moon.

Because system engineers threw requirements over
the wall to software developers, engineers and devel-
opers necessarily became interchangeable, as did their
life-cycle phases—suggesting that a system is a system,
whether in the form of higher-level algorithms, software
that implements the algorithms, or systems that exe-
cute them. From this perspective, system design issues
became one and the same as software, reinforced by the
fact that entire missions were tested by software simula-
tions integrating hardware, software, the universe, and
humanware (for example, astronauts).

expect the unexpected
It quickly became clear that nothing and no one could

be expected to be perfect. The team learned to plan
accordingly. Take Apollo 11. Just before landing on
the moon, onboard software discovered that the CPU
was fast approaching overload and there would not be
enough time to perform landing functions unless emer-

gency steps were taken. With the software’s global error
detection and recovery mechanisms, nominal displays
were interrupted with priority alarm displays. Every time
the CPU approached overload, the software cleared out
its entire queue of processes and restarted its functions,
allowing only the highest priority processes to perform
until the landing was completed.

The source of the error was later found to be the
astronaut checklist document instructing the astronaut
to place the rendezvous radar hardware switch in the
wrong position, thus stealing valuable CPU time. The
mechanisms the software used for this emergency were
thought by many to have saved the Apollo 11 mission.
Similarly, on Apollo 12, just prior to liftoff, lightning
struck the spacecraft twice, each time causing a com-
puter power failure. Again, the software restarted the
mission functions in time for liftoff.

The flexibility required of these
missions could not have been
accomplished in real time without
an asynchronous, multiprogram-
ming operating system where
higher priority processes interrupt
lower priority processes. Assigning

a unique priority to every function in the software was
critical for ensuring that all events would take place in
the correct order and at the right time—for example,
turning the engine on or off or ensuring that the priority
displays would interrupt normal mission sequences in
an emergency.

To our surprise, changing from a synchronous OS
used in unmanned missions to an asynchronous OS in
manned missions supported asynchronous development
of the flight software as well. In essence, the develop-
ment process—a system in itself—inherited the same
philosophy of “expect the unexpected” embodied in the
system it developed. We also established that a system-
wide “kill and start over again” recompute approach to
error detection and recovery was far superior to a point-
repair and “pick up from where you left off” approach.

Simplifying the software’s operation simplified its
development. Similarly, steps taken to create solutions
within the multiprogramming environment later became
solutions for multiprocessing environments. Although
only one process is actively executing at a given time in a
multiprogramming environment, other processes in the
same system—sleeping or waiting—exist in parallel with
the executing process. With this as a backdrop, we cre-
ated the priority display mechanisms, essentially chang-
ing the man-machine interface between the astronauts
and the onboard flight software from synchronous to
asynchronous so that the mission could be reconfigured
in real time.

Often, a problem that at first seemed impossible was
eventually solved by changing its context. It seemed
unthinkable to define and provide error detection and

USL had as its origin
our study of Apollo flight
software development.

	 36	 Computer

recovery for every potential cause—for example, the two
successive lightning strikes that shut down Apollo 12’s
computer systems prior to launch.

Our solution was to determine general ways in which
hardware or software could be affected (for example, by a
power outage triggered by one of many causes), reducing
the problem to a small, finite number of predictable things
to check for. Moreover, this approach provided new assur-
ances that certain errors could be eliminated early in the
life cycle—or even prevented—simply by adding rules
used at definition time (for example, always assign a name
directly to logic to be invoked, instead of referring to it
relative to other logic; for example, refer to Sally instead of
Fred + n). This eliminated the problem that would occur
in the event that either logic’s location relative to the other
would later be changed and as a result the logic in ques-
tion would be referred to incorrectly, possibly resulting in
dire consequences. Although the need for this kind of rule
is less likely today, its value at that
time was the degree to which it sug-
gested the importance of preventing
errors “before the fact.”

Of course, better can sometimes
become the enemy of good. For
example, lock mechanisms prevent-
ing human operators from entering
an input error might also eliminate
the possibility of fixing an unanticipated problem during
a mission by going through the back door. On Apollo 14,
for example, erroneous hardware signals were mislead-
ing the software, and it became necessary to manually
intervene in real time to “fool” the software so that it
would ignore the signals. The change, made at the elev-
enth hour by the developers working closely with the
astronauts through Mission Control, would go against
the software specification but would remain consistent
with the original intent of the system requirements at
large. After two attempts, the new change finally worked
in simulations on the ground and was uploaded to the
spacecraft, saving the mission with minutes to spare.

Clearly, we needed a way to “have our cake and eat it
too”—built-in lock mechanisms that would not interfere
in this kind of an emergency.

Fascination with errors
Because of the never-ending focus on making every-

thing as perfect as possible, there was an ongoing fascina-
tion with errors: finding them, detecting and recovering
from them, handling them, preventing them, learning
from them, learning about systems from them—even
defining what an “error” is (or isn’t). We determined
that we could not measure a system’s reliability until
we defined a formal, agreed-upon general concept of
“error,” along with all of its implications.7

We defined error in terms of system viewpoints (for
example, requirements versus specification versus imple-

mentation), programs (lunar excursion module versus
command module versus commonware); categories
(system “glue” versus powered flight); weight (cata-
strophic versus FLTs, or “funny little things”); how to
determine the source or cause of an error (for example,
software versus hardware); kind of error (timing); and
when an “error” is really an error or a “new feature”
(or, for example, if two errors cancel each other, is there
an error?). We developed a standard process for record-
ing and relating to every error, including its history—for
example, in what part of the life cycle it was created and
found and, accordingly, what could be done to prevent
it in the future.

Earlier ideas for a systems technology began to surface
as we analyzed the kinds and causes of software prob-
lems found during verification and validation (V&V)
testing of the Apollo onboard software. Because of
Apollo’s software design and development processes, at

the outset we faced the likelihood
of introducing almost any conceiv-
able error—in hindsight, a blessing
in disguise. This was due in part to
size constraints in the hardware,
which made it necessary for mission
phases to share erasable memory.
In addition, the flight software for
each mission was developed concur-

rently with flight software for other missions, along with
mission planning, hardware integration, simulators, and
astronaut training—underscoring how much the soft-
ware was part of a larger system. Finally, and most obvi-
ously, there were many unknowns given that we had not
been to the moon before.

What was accomplished (or not accomplished) pro-
vided a wealth of information from which to learn.
Each error was recorded when it was discovered in the
software released for formal testing, and over time we
began to appreciate how important accuracy is in filling
out such forms. Through these efforts, we learned that
interface errors (dataflow, priority, and timing errors
from the highest to the lowest levels of a system to the
finest grain) accounted for approximately 75 percent
of all errors—for example, ambiguous relationships,
integration mismatches and conflicts, communication
and coordination problems—a clear indication that
finding ways to reduce errors in this category was of
the highest priority.

Although half of the billions of dollars (by today’s stan-
dard) spent on the life cycle was devoted to simulation,
44 percent of the errors were found by manual means,
referred to on the project as the Augekugal method (eye-
balling) or “Nortonizing” (named after the person who
perfected this technique). More automation was needed,
especially static as opposed to dynamic analysis. Alarm-
ingly, 60 percent of the errors found during V&V had
unwittingly existed in previous flights—showing how

We developed a standard
process for recording and

relating to every error,
including its history.

	 December 2008	 37

subtle they were—though, fortunately, no software
errors surfaced during actual flights.

The interface errors were analyzed in greater detail
first because they not only accounted for the majority
of errors, they also were often the most subtle and most
difficult to find. Each interface error was placed into
a category identifying the means to prevent it by way
of system definition. This process led to a set of axi-
oms forming the basis for a new mathematical theory
for designing systems that would, among other things,
eliminate the entire class of interface errors just by the
way a system is defined.1,2,5,8

Given the ongoing evaluation of the Apollo effort, it
became clear that a new kind of language was needed
and that our mathematical theory could provide its core.
Results of the analysis took on many dimensions, not
just for space missions but for applications in general,
and not just for software but for systems in general—the
results of which were not readily
apparent for many years to come.

Lessons learned from this effort
continue today: Systems are asyn-
chronous, distributed, and event-
driven in nature, and this should be
reflected inherently in the language
used to define them and the tools used to build them. This
implies that a system’s definition should characterize nat-
ural behavior in terms of real-time execution semantics,
and designers should no longer need to explicitly define
schedules of when events are to occur. Instead, events
should occur when objects interact with other objects so
that by defining such interactions the schedule of events
is inherently defined. Most important, it became clear
that the root problem with traditional approaches is that
they support users in “fixing up wrong things” rather
than in “doing things the right way in the first place.”
Combined with further research, as this became more
widely understood, it became clear that the character-
istics of good design could be reused by incorporating
them into a language for defining systems.

UniverSAL SyStemS LAngUAge
USL captures the lessons learned from Apollo. What

sets USL apart is the systems paradigm on which it is
based.1 Whereas the traditional software development
approach is curative, testing for errors late into the life
cycle, USL’s development-before-the-fact philosophy is
preventive, not allowing errors in the first place. Cor-
rectness is accomplished by the very way a system is
defined, by built-in language properties inherent in the
grammar. A USL definition models both its application
(for example, an avionics or banking system) and prop-
erties of control into its own life cycle. Each SOO defi-
nition has built-in constraints that support the designer
and developer, yet they do not take away flexibility in
fulfilling requirements. A SOO inherently integrates all

aspects of a system (for example, function-, object-, and
timing-oriented). Every system is an object, every object
a system.

Mathematical approaches are known to be difficult
to understand and are limited in their use for nontrivial
systems as well as for much of the system’s life cycle.
Unlike formal languages that are not friendly or practi-
cal, and friendly or practical languages that are not for-
mal, its users consider USL to be not only formal but also
practical and friendly.9-11 Unlike other mathematically
based formal methods, USL extends traditional math-
ematics with a unique concept of control: universal real-
world properties internal to its grammar—such as those
related to time and space—are inherent, enabling USL to
support the definition and realization of any kind or size
of system. The formalism along with its unfriendliness
is “hidden” by language mechanisms derived in terms
of that formalism.

general systems theory
A formalism for representing

the mathematics of systems, USL
is based on a set of axioms of a
general systems theory and formal
rules for their application. All rep-

resentations of a system are defined in terms of a func-
tion map (FMap) and a type map (TMap). Every SOO
is defined in terms of a set of FMaps and TMaps. Three
primitive structures, derived from the set of axioms,
and nonprimitive structures derived ultimately in terms
of the primitive structures specify each map. Primitive
functions, corresponding to primitive operations on
types defined in a TMap, reside at the bottom nodes
of an FMap. Primitive types, each defined by its own
set of axioms, reside at the bottom nodes of a TMap.
Each primitive function (or type) can be realized as a
top node of a map on a lower (more concrete) layer of
the system.

Providing a mathematical framework within which
objects, their interactions, and their relationships can
be captured, USL—a metalanguage—has “metamecha-
nisms” for defining systems. Although the core language
is generic, the user language (a by-product of the defini-
tion of newer systems and thus newer mechanisms) can
be application specific since USL is semantics-dependent
but syntax-independent, yet every syntax shares the
same semantics.

Implementation- and architecture-independent, USL
adheres to the principle that everything is relative (one
person’s design is another’s implementation); the same
language can be used seamlessly throughout a system’s
life cycle to define and integrate all aspects of, and view-
points about, the system and its evolution. The over-
arching principle is that all aspects of a USL universe
are related to the real world and that the language itself
inherently captures this relationship.

What sets USL apart
is the systems paradigm

on which it is based.

	 38	 Computer

Developers have used USL to define systems and
develop software ranging from mission-critical sys-
tems4,12 to commercial applications13 to the development
of system and software tools.14,15 In so doing, it meets the
challenge linguists describe as assuring consistency in
meaning—fitting together the partially fixed semantic
entities that we carry in our heads—to approximate the
way reality fits together as it comes to us from moment to
moment. The entities are the world (or perceptions of the
world) reduced to its parts and secured in our minds.16

USL’s philosophy is that all objects are recursively reus-
able and reliable; reliable systems are defined in terms of
reliable systems; only reliable systems are used as build-
ing blocks; and only reliable systems are used as mecha-
nisms to integrate these building blocks to form a new
system. Designers can then use the new system, along
with more primitive ones, to define (and build) more
comprehensive reliable systems. If a system is reliable, all
the objects in all its levels and layers are reliable.

Six axioms of control
We must visualize a system definition both by what it

does (level by level, for example, a parent node in a hierar-
chy is on a higher level than its children nodes) and how it
does it (layer by layer, for example, a specification is on a

higher layer than its implementation). However, a hierar-
chical definition runs the risk of not being reliable unless
there are explicit rules that ensure each decomposition is
valid; for example, the behavior of a successive lower level
(or layer) completely replaces the behavior of that which
it replaces. A SOO can be defined from its most general
state to its most detailed states. Objects, related properly,
can replace other objects. An object is decomposed until
the primitive objects by which it has been defined have
been reached.

At the base of every USL system is a set of six axi-
oms—universally recognized truths—and the assump-
tion of a universal set of objects.2,5,8 The axioms provide
the formal foundation for a USL “hierarchy”—referred
to as a map, which is a tree of control that spans net-
works of relations between objects. Explicit rules for
defining a map have been derived from the axioms,
where—among other things—structure, behavior, and
their integration are captured.

Resident at every node on a map is the same kind
of object (for example, a function on every node of an
FMap and a type on a TMap). The object at each node
plays multiple roles; for example, the object can serve
as a parent (in control of its children) or a child (being
controlled by its parent). Whereas each function on an
FMap has a mapping from its input to output (domain to
codomain), each type on a TMap has a relation between
its domain and codomain.

Each axiom defines a relation of immediate domina-
tion of a parent over its children. The union of these rela-
tions is control. Among other things, the axioms estab-
lish the relationships of an object for invocation in time
and space, input and output (domain and codomain),
input access rights and output access rights (domain
access rights and codomain access rights), error detec-
tion and recovery, and ordering during its developmental
and operational states. Every system can ultimately be
defined in terms of three primitive control structures,
each of which is derived from the six axioms—resulting
in a universal semantics for defining systems.

Universal primitive control structures
A structure relates each parent and its children

according to the set of rules derived from the axioms
of control. A primitive structure provides a relationship
of the most primitive form (finest grain) of control. All
maps are defined ultimately in terms of the primitive
structures and therefore abide by the rules associated
with each structure: A parent controls its children to
have a dependent (Join), independent (Include), or deci-
sion-making relationship (Or).

Figure 1 shows the rules used in defining each of the
three primitive structures, using a syntax that FMaps
and TMaps can share. Because it is defined in terms
of these structures, every SOO has control properties,
inherently providing seamless integration, maximizing

Figure 1. The three primitive control structures and their rules
form a universal foundation for constructing maps in the
domains of time and space as FMaps and TMaps.

	 December 2008	 39

its own reliability and flexibility to change, capitalizing
on its own parallelism, and maximizing the potential for
its own reuse and automation. The structures ensure that
all interface errors—approximately 75 to 90 percent of
all errors normally found during testing in a traditional
development—are eliminated at the definition phase.

Although SOOs have properties for systems in gen-
eral, the properties have special significance for the
real-time, distributed behavior of systems: Each system
is event-interrupt-driven; each object state is traceable
(putting into good use the property of single reference,
single assignment), reconfigurable, and has a unique
priority; independencies and dependencies can readily
be detected (manually or automatically) and used to
determine where parallel and distributed processing are
most beneficial.

Any system can be defined com-
pletely using only primitive struc-
tures, but less primitive structures
defined by and derived from the
primitive structures—and there-
fore governed by the control axi-
oms—accelerate the definition and
understanding of a system. The
defined structure, a powerful form
of template-like reuse, provides a
mechanism to define a map without
explicitly defining some of its elements. An FMap struc-
ture has placeholders for variable functions; a TMap
structure has placeholders for variable types; a univer-
sal structure has placeholders for variable functions or
types. Async is an example of a real-time, distributed,
communicating FMap structure with both asynchro-
nous and synchronous behavior.

An example of a TMap structure is TreeOf, a col-
lection of the same type of objects ordered using a tree
indexing system. Each TMap structure assumes its own
set of possible relations for its parent and children types.
Abstract types decomposed with the same TMap struc-
ture inherit the same primitive operations and therefore
the same behavior (each of which is available to FMaps
that have access to members of each of its TMap’s types).
As researchers gain experience with new and different
types of applications, new reusable structures emerge.

Definition and execution space
We define all functions in a system and their relation-

ships with a set of FMaps. Similarly, we define all types
in a system and their relationships with a set of TMaps.
FMaps represent the dynamic (doing) world of action
by capturing functional and temporal (including prior-
ity) characteristics. TMaps represent the static (being)
world of objects by capturing spatial characteristics—
for example, containment of one object by another or
relationships between locations of objects in space.

FMaps define, integrate, and control the transition

of objects from one state to another. TMaps define,
integrate, and control the potential atemporal relations
between states of objects. Each function in an FMap,
defined using types of objects in a TMap, has one or
more objects as its input and one or more objects as its
output. Each object is a member of a type in a TMap
and resides in an Object Map (OMap), an instance of
a TMap. Each type on a TMap owns a set of inherited
primitive operations used as primitive functions by the
FMaps using that TMap’s objects.

FMaps and TMaps depend on and reuse each other.
The primitive operations that belong to types on a
TMap used by FMaps within the same layer are them-
selves defined with FMaps on the TMap’s implementa-
tion layer and therefore rely on another layer’s TMaps.
Thus, because an FMap depends on TMaps, it depends

on another layer’s FMaps; simi-
larly, because a TMap depends
on another layer’s FMaps, it too
depends on another layer’s TMaps.
Functions depend on types, types on
functions. In other words, FMaps
and TMaps recursively reuse each
other, layer by layer.

Every change to a SOO is trace-
able throughout the system. The
FMaps for a given system are inher-

ently integrated with the TMaps by using their objects
and primitive operations, providing the ability to auto-
matically trace within and between a system’s levels and
layers. If, for example, a type is changed on a TMap, all
impacted FMap areas are traceable. In an FMap, an out-
put variable of any function is fully traceable to all other
functions using the state that variable refers to.

An FMap is completed when all its leaf nodes (or leaf
nodes of the FMaps it uses) are recursive leaf nodes
or are primitive function leaf nodes that use primitive
operations of types in the TMaps. A recursive leaf node
definition has the name and functionality of one of its
parent’s ancestor definition nodes; see, for example, Jset
in Figure 2. The recursive reuse pattern has an Or primi-
tive structure decision node between each of its recur-
sive leaf nodes (each with some input different than the
ancestor’s input) and the ancestor node. For a recursion
to always be able to terminate, at least one of the Or
structure’s alternatives cannot be (or have a descendent
that is) a recursive leaf of the ancestor. A recursive leaf
is instantiated using its ancestor definition node, and
its execution control is expanded as an acyclic graph of
actions (or objects). A set of primitive types and their
associated primitive operations provides a mechanism
for layered reuse by different domains of applications.
Application domains are separated into layers of reuse in
which the primitive types of one layer are implemented
in terms of reusable FMaps and TMaps of one or more
lower-level layers of detail.

USL meets the challenge
linguists describe as assuring

consistency in meaning to
approximate the way reality

fits together as it comes to us
from moment to moment.

	 40	 Computer

Each layer of TMaps and FMaps becomes itself a
reusable system to the layer immediately above it, which
itself is a system layer. Another special category of reuse
is the ability for an OMap to be persistently stored to
disk—providing long-term memory—or marshaled
to a socket, providing generic transmission of objects
between processes. Because everything a designer needs
to know (no more, no less) is in a SOO definition, all
model viewpoints can be determined from that defini-
tion—for example, in terms of projections. Inherent
within each map are features such as polymorphism,
encapsulation, and inheritance that reside on both the
function side and type side of a system.

A SOO is realized—that is, has all of its values instan-
tiated for a particular performance pass—in terms of an
Execution Map (EMap) of actions, an instantiation of an
FMap, and its OMaps. Figure 2 depicts a SOO’s definition
and execution space.5 It shows a person’s house and a path

that he can take from the house to get food and water. In
this figure, an alternative syntax is used to define FMaps:
“function(domain)structure=codomain” instead of
“function(domain;codomain)structure.”

Part of the FMaps and TMaps of this system are
shown here; the EMap and OMaps represent the execu-
tion of the FMap and TMaps. Since TMaps are inte-
grated with FMaps, the OMaps are integrated with the
EMap. Annotations on the EMap show the functions
presently being executed as actions, actions that have
occurred in the past, and actions that will occur in the
future over two progressive intervals of time. The labels
on the OMaps show corresponding variable object
states, relation instances between object nodes, and an
overall structure inherited from the Jset universal struc-
ture map. A Jset is a recursively defined set of depen-
dent elements. It can be interpreted as an FMap-defined
structure or a TMap-defined structure. In the FMap,

Figure 2. The definition and execution space of a SOO shows an FMap and its TMaps and their instantiation in terms of an EMap
and its OMaps over time and space.

	 December 2008	 41

r1 becomes object state, p3; in the TMap, r1 becomes
relational state, “next.” OMap, path, is defined by Jset
as a set of places each having a “next” relation between
them. When Jset is used to define the followPath func-
tion, it results in a recursive sequence of move_along_
path actions in the EMap that go from one place on the
path to another using the “next” primitive action that
uses the “next” relation on the OMap. Other defined
structures in the figure are also used in the FMap and
TMaps (for example, ci, cc, and cj).

When an object state event occurs, each function that
depends on that object state is instantiated. This instan-
tiation process results in a totally ordered (in terms of
priority) map of function instances; when a function
instance becomes ready to execute,
it inherently is always correctly
scheduled and allocated to the
appropriate resource(s).

TMaps provide universal primi-
tive operations for controlling
objects and object states (for exam-
ple, type Any) that are inherited by
all types of objects. They offer a
means to create, destroy, copy, ref-
erence, locate, access a value, detect and recover from
errors, access the type of an object, and access instances
of a type, providing an easy way to manipulate differ-
ent types of objects. With the universal primitive opera-
tions, building systems can be accomplished uniformly.
TMap and OMap, themselves, are available as types to
facilitate a system’s ability to understand itself better
and manipulate all of its objects the same way, when it
is beneficial. TMaps ensure proper use of objects in an
FMap (for example, objects cannot exist in the same
place at the same time; it is not possible to put a leg on a
table where a leg already exists; conversely, it is not pos-
sible to remove a leg when there is no leg). A reference
to an object’s state cannot be modified if other refer-
ences are being (or could be) made to that state; reject
values exist in all types, signifying error conditions.

A system can adapt to changing resource require-
ments if the functional architecture definition is sep-
arated from its resource definitions. To support such
flexibility with the necessary built-in controls, USL
itself is used to define functional, resource, and alloca-
tion architectures. It can be used to define global and
local constraints for both FMaps and TMaps, with the
constraints themselves defined in terms of FMaps and
TMaps. If we place a constraint on the definition of
an operation (for example, where sendBy:vehicle takes
between 2 and 3 hours), this constraint influences all
functions that use this definition. Such a constraint can
be overridden by a constraint placed on a function in a
local context that uses this original definition—where
sendBy:car takes between 4 and 6 hours, for example,
overriding the default.

Maps guide a designer in thinking through concepts
at all levels and layers of system design and the 001 Tool
Suite (001), USL’s automation,14,15 in automating the life
cycle. Typically, designers begin to define a system by
sketching TMaps, where they decide on the types of
objects (and their relationships) in the system. Often,
a RoadMap (RMap) that organizes all system objects,
including FMaps, TMaps, EMaps, OMaps, defined
structures, and other RMaps is “sketched” in parallel
with the TMap. At each node of an RMap, a reference
is made to another map.

Once a TMap has been agreed upon, the FMaps begin
to fall into place because of the natural functionality (or
groups of functionality) in the TMap system. The TMap

provides the structural criteria from
which to evaluate the functional
partitioning of the system—for
example, the shape of the combined
patterns of the structural organiza-
tion of the FMaps is derived from the
structural organization of potential
objects defined by the TMap. With
FMaps and TMaps, a system (and
its viewpoints) is divided into com-

ponents and groups of components that naturally work
together.

Automated environment
How can we build a more reliable system and at the

same time increase our productivity in building it? Take
for example, testing.

Correct use of USL eliminates the majority of errors,
including all interface errors within a system model and
its derivatives. Our 001 analyzer statically hunts down
all errors resulting from the incorrect use of USL. When
a TMap is changed, 001 demotes the status of all FMaps
impacted by that change; the FMaps are then reanalyzed
in light of the TMap changes to reestablish their status.
Testing for integration errors is minimized because of
the inherent integration of SOOs. A SOO model can
be realized by directly interpreting it on an operational
runtime environment or by mapping it onto a targeted
virtual or real machine architecture and environment.
For a virtual machine, simulations of models can be used
to quantify characteristics and qualify tradeoffs of the
system to be developed.

Given a set of FMaps and TMaps, 001 can gener-
ate much of the design and all of the RMaps, perform
requirements analysis, and simulate and observe a sys-
tem’s behavior as it is being executed in terms of EMaps
and OMaps. For software, 001 can use the same FMaps
and TMaps to automatically generate all of the code
including its documentation.

001’s requirements analysis component automates the
process of going from requirements to design to code and
back again. Because it has an open architecture, 001’s

Correct use of USL eliminates
the majority of errors,

including all interface errors
within a system model

and its derivatives.

	 42	 Computer

generator can be configured to generate one of a possible
set of implementations for an architecture of choice (or
to interface with any outside environment—for example,
communications package, Internet interface, database,
graphics, operating system, a language, or the users’ own
legacy code).

Maintenance shares the same benefits. The developer
doesn’t ever need to change the code, since applica-
tion changes are made to the specification—not to the
code—and target architecture changes are made to the
configuration for the generator environment and not
the code. Only the changed part of the system is regen-
erated and integrated with the rest of the application—
again, the system is automatically analyzed, generated,
compiled, linked, and executed without manual inter-
vention. Just as with the systems it is used to develop,
001 is completely defined with itself, using USL, and is
completely and automatically generated with itself. It
therefore has the same before-the-fact properties that
all USL systems have.

USL as a formal foundation for other languages
Diverse mappings (several automated) exist that go

from a given syntax and semantics to USL or from
USL to one of a possible set of syntactical forms (and
semantics).9,17,18 The USL team recently performed an
analysis of how the USL formal semantics could pro-
vide SysML/UML2 with a universal system formalism
that can reduce semantic ambiguity in the OMG SysML
specification19-21 and significantly simplify the UML2
specification standard.

M ost of today’s systems are defined with languages
originally intended for software. These systems
are built using a programming or specification

language created specifically for a computer—a syntax-
first, syntax-dependent approach. USL, based on a for-
mal systems theory derived from real-world systems—a
semantics-first, syntax-independent approach—was
originally created for defining systems in general, where
the goal was to combine mathematical perfection with
engineering precision.

Unlike languages where language mechanisms, rules,
and tools are added ad hoc and after the fact as more
is learned about a class of systems, USL derives its lan-
guage mechanisms and tools from its core set of primi-
tive mechanisms. Because of this flexibility, USL can
be used as it gracefully evolves and it also can lend
its formal support to other languages. By inheriting its
preventive philosophy, the potential exists to “solve”
(prevent) a given problem as early in the life cycle as
possible.

Automatic static analysis of the specification model
is more preventive than static analysis of after-the-
fact code. Preventing a problem by the way a system is

defined is even better. The goal is to apply this philoso-
phy across the board, including systems and software,
unifying their understanding by a formal means with a
commonly held set of system semantics.

We inadvertently discovered during the Apollo error
study that there was a universal way to prevent errors
by the way a system is defined, addressing the issue of
reliability head on. While searching for mechanisms to
define error-free systems, we unexpectedly found pat-
terns with properties that addressed other issues as well.
Among other things, these patterns always present in
FMaps and TMaps inherently support asynchronous
and distributed behavior within all objects.

Whereas on Apollo it was necessary to manu-
ally program the scheduling of the processes and the
assignment of priorities to each function to capitalize
on the asynchronous operating system, FMaps and
TMaps inherently make this happen from the begin-
ning, starting in the models themselves.4 On Apollo,
some tailored lock mechanisms appeared to be at cross
purposes with other concerns. What would have been
solved with locks then can now take place implicitly
and generically through the mechanisms in FMaps
and TMaps. What was previously a manual life cycle
process can now be automated. Further, because USL
maximizes inherent reuse, the larger and more complex
a system, the higher the productivity. Unlike before, it is
now possible to increase a software system’s reliability
and at the same time increase the productivity in its
development.22,23

Used in research and development, the next step is to
bring USL into a larger community of users. Analysis of
lessons learned from each of its evolving states continues
in a manner not unlike the empirical Apollo studies—
build on what has been beneficial and eliminate the rest.
Each time we learn from experience, we evolve accord-
ingly, maximizing the degree of preventiveness.

Although the Apollo software was developed long
ago, we continue to reflect on its lessons. It is the hope
that its legacy will continue. The goal is that the systems
of today inherit the best of yesterday, and systems of
tomorrow inherit the best of today. ■

references
 1. M. Hamilton, “Inside Development Before the Fact,” cover

story, editorial supplement, 8ES-24ES, Electronic Design,
Apr. 1994

 2. M. Hamilton and W.R. Hackler, “Universal Systems Lan-
guage for Preventative Systems Engineering,” Proc. 5th Ann.
Conf. Systems Eng. Res. (CSER), Stevens Institute of Technol-
ogy, Mar. 2007, paper #36.

 3. M. Hamilton, “Zero-Defect Software: The Elusive Goal,”
IEEE Spectrum, Mar. 1986, pp. 48-53.

 4. M. Hamilton, “The Heart and Soul of Apollo: Doing It Right
the First Time,” Proc. 7th Int’l Military and Aerospace Pro-

	 December 2008	 43

grammable Logic Devices (MAPLD) Conf., NASA Office of
Logic Design, paper S216, 2004.

 5. M. Hamilton and W.R. Hackler, “Reducing Complexity: It
Takes a Language,” Innovations in Systems and Software
Eng. J., NASA, to be published by Springer Verlag, 2009.

 6. M. Hamilton, Shuttle Management Memo #14, Charles Stark
Draper Laboratory, Cambridge, Mass., 1972.

 7. M. Hamilton, What Is an Error?, tech. note, HTI, Cambridge,
Mass., 1991.

 8. M. Hamilton and S. Zeldin, “Higher Order Software—A
Methodology for Defining Software,” IEEE Trans. Software
Eng., vol. SE-2, no. 1, Mar. 1976, pp. 9-32.

 9. B. Krut Jr., Integrating 001 Tool Support in the Feature-Ori-
ented Domain Analysis Methodology, tech. report CMU/
SEI-93-TR-11, ESC-TR-93-188, SEI, Carnegie Mellon Univ.,
1993.

 10. M. Ouyang and M.W. Golay, An Integrated Formal Approach
for Prototyping High-Quality Software of Safety-Critical
Systems, tech. report MIT-ANP-TR-035, MIT, 1995.

 11. Software Productivity Consortium, “Object-Oriented Meth-
ods and Tools Survey,” SPC-98022-MC, v.02.00.02, Dec.
1998.

 12. M. Hamilton and W.R. Hackler, “Deeply Integrated Guid-
ance Navigation Unit (DI-GNU) Common Software Archi-
tecture Principles,” DAAAE30-02-D-1020 and DAAB07-98-
D-H502/0180, Picatinny Arsenal, NJ, 2003-2004.

 13. J. Keyes, Internet Management, chapt. 30-33 on 001-Devel-
oped Systems for the Internet, pp. 391-511, Auerbach, 2000.

 14. HTI, 001 Tool Suite (1986-2008); www.htius.com and http://
icb.nasa.gov/001 or htius.com/001_nasa.

 15. M. Hamilton, “Development Before the Fact in Action,” cover
story, special editorial supplement, 22ES-30ES, Electronic
Design, June 1994.

 16. D. Bolinger and D.A. Sears, Aspects of Language, Harcourt
Brace Jovanovich, 1981, p. 109.

 17. M. Hamilton and W.R. Hackler, “Towards Cost Effective and
Timely End-to-End Testing,” HTI, prepared for Army Res.
Lab., contract no. DAKF11-99-P-1236, 17 July 2000.

 18. S. Cushing, “A Note on Arrows and Control Structures: Cat-
egory Theory and HOS, Candidate BMD Data and Axioms,”
contract no. DASG60-77-C-0155, HOS, prepared for Ballistic
Missile Defense, Advanced Technology Center, June 1978.

 19. S. Friedenthal, A. Moore, and A. Steiner, “OMG Systems
Modeling Language (OMG SysML) Tutorial,” Proc. 16th
Ann. Int’l Symp. INCOSE 2006, INCOSE, 2006.

 20. M. Hamilton and W.R. Hackler, “A Formal Universal Systems
Semantics for SysML,” Proc. 17th Ann. Int’l Symp. INCOSE
2007, INCOSE, 2007, paper #8.3.2.

 21. Object Management Group, “Systems Modeling Language,”
v. 1.0, 2006; www.omgsysml.org.

 22. Department of Defense, “National Test Bed Software Engi-
neering Tools Experiment—Final Report,” vol. 1, Experiment
Summary, Table 1, p. 9. Dept. of Defense Strategic Defense
Initiative Organization, Washington, D.C., Oct. 1992.

 23. M. Schindler, Computer-Aided Software Design, John Wiley
& Sons, 1990.

Margaret H. Hamilton is the founder and CEO of Hamil-
ton Technologies, Inc. She was responsible for the Apollo
and Skylab onboard flight software effort while Director
of the Software Engineering Division at MIT’s Charles
Stark Draper Laboratory. Her research interests are pre-
ventive systems (languages, methods, and tools), operat-
ing systems/man-machine interfaces, and error detection
and recovery (including secure systems). She received an
AB in mathematics and philosophy from Earlham Col-
lege. Contact her at mhh@htius.com.

William R. Hackler is the lead engineer for 001’s develop-
ment at Hamilton Technologies, Inc. His research inter-
ests are neuroscience, metamorphic systems (robotics and
hardware), and synergetics (Buckminster Fuller)/tenseg-
rity systems. He studied mathematics and logic at Mesa
College and 12-tone music composition with composer
Mertin Brown. Contact him at ron@htius.com.

www.computer.org/publications/

The IEEE Computer Society publishes
over 250 conference publications a year.
Visit us online for a preview of the latest

papers in your field.250

